Proprietà e particolarità dell’intersezione tra insiemi

Proprietà e particolarità dell'intersezione tra insiemi

L’intersezione tra insiemi, di cui, nello scorso articolo, abbiamo riportato definizione e applicazioni quotidiane, così come nel caso dell’unione, presenta numerosi proprietà e particolarità, l’argomento protagonista dell’articolo odierno, la cui conoscenza è fondamentale per sapersi orientare al meglio all’interno dell’insiemistica.

Commutatività

L’ordine degli insiemi non influisce sull’intersezione. Questo significa che intersecare A con B produce lo stesso insieme di intersecare B con A.

Simbolicamente: A B = BA.

Associatività

È possibile raggruppare gli insiemi in modo diverso senza cambiare il risultato. Questa proprietà permette di intersecare più di due insiemi senza preoccuparsi dell’ordine.

Simbolicamente: (AB) ∩ C = (CB) ∩ A

Idempotenza

L’intersezione di un insieme con se stesso è l’insieme stesso, riflettendo l’idea che ogni elemento è sicuramente comune a sé stesso.

Simbolicamente: A A = A.

Insieme vuoto

L’intersezione di un insieme con l’insieme vuoto è sempre l’insieme vuoto. Questo perché non ci sono elementi in comune tra un insieme e l’insieme vuoto.

Simbolicamente: A ∩ ∅ = ∅.

L’intersezione di due insiemi vuoti equivale sempre ad un insieme vuoto

Simbolicamente: ∅ ∩ ∅ = ∅.

Assorbimento

L’intersezione di un insieme con la sua unione con un altro insieme restituisce l’insieme originale. Questo riflette il fatto che qualsiasi elemento in A è sicuramente presente in A B.

Simbolicamente: A ∩ (AB) = A.

Intersezione multipla

L’intersezione può essere estesa a più di due insiemi.

Simbolicamente: A ∩ B C = {x | x A, xB, xC}.

Insiemi disgiunti

Due insiemi sono detti insiemi disgiunti quando non hanno elementi in comune. L’intersezione tra essi equivale all’insieme vuoto.

Simbolicamente: A ∩ B = ∅

Insiemi non disgiunti

Due insiemi sono detti insiemi non disgiunti quando questi hanno elementi in comune. L’intersezione tra essi equivale solo agli elementi in comune.

Simbolicamente: A ∩ B = {x | x A e B}.

Intersezione con sottoinsiemi

Qualora B sia il sottoinsieme di A contenente però tutti gli elementi di A, la loro intersezione equivale all’insieme intero.

Simbolicamente: Se A = B allora diremo che A ∩ B = A.

Nel momento in cui B sia il sottoinsieme di A contenente solo alcuni elementi e non tutti, l’intersezione sarà equivalente al sottoinsieme.

Simbolicamente: Se B ⊆ A diremo che A ∩ B = B.

Potrebbero interessarti anche...

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *