Le proprietà delle potenze: approfondimento e spiegazione
Con il termine potenza indichiamo il prodotto di un numero moltiplicato per sé stesso tante volte quante ne richiede l’esponente. Trattasi di un concetto fondamentale, le quali nozioni le ritroviamo non solo nell’aritmetica di tutti giorni, ma anche alla base di numerose materie scientifiche e matematiche come la chimica e la geometria. A tal motivo, risulta di vitale importanza comprendere appieno le caratteristiche di quest’operazione, ricca di numerose proprietà, che analizzeremo insieme nel corso di quest’articolo.
Se, inoltre, vuoi approfondire le tue conoscenze su quest’argomento, ti consiglio di visionare il precedente post in cui approfondiamo il concetto generale della potenza, specificandone definizione, caratteristiche e riportando molti esempi.
Prima proprietà delle potenze
Moltiplicazione tra le potenze con la stessa base: il prodotto tra due o più potenze aventi la stessa base è uguale ad una potenza avente per base la stessa base e per esponente la somma degli esponenti.
Semplificando il tutto si riscrive la base sommandone gli esponenti, come nel seguente esempio: 23*22 = 23+2 = 25.
Seconda proprietà delle potenze
Divisione tra le potenze con la stessa base: il quoziente tra due potenze aventi la stessa base è uguale ad una potenza avente per base la stessa base e per esponente la differenza degli esponenti.
Quindi, la divisione tra le potenze con la stessa base, si svolge in modo similare alla prima proprietà delle potenze, apportando però un’unica caratteristica che le contraddistingue: la differenza degli esponenti. A titolo esemplificativo è possibile riportare un esempio simile a quello precedente come: 23:22 = 23-2 = 2
Terza proprietà delle potenze
Potenza di potenza: la potenza di una potenza è uguale ad una potenza avente per base la stessa base e per esponente il prodotto degli esponenti.
Teoricamente parlando sembra essere simile alle due proprietà riportate in precedenza, eppure presenta caratteristiche contraddistinte prevalentemente a livello grafico e di calcolo. Una potenza di potenza, infatti, è facilmente riconoscibile poiché la base, assieme al suo esponente, sono racchiuse all’interno di una parentesi, al quale esterno è collocato un ulteriore esponente, che dovrà esser moltiplicato per l’esponente interno in modo da ottenere il risultato corretto. Al fine di semplificare la nozione riportata, è possibile spiegare quanto detto attraverso l’utilizzo di un esempio, come (22)3. In questo caso occorrerà riportare la stessa base moltiplicando gli esponenti. Nel caso in questione il risultato sarà equivalente a 26.
Quarta proprietà delle potenze
Moltiplicazione tra potenze con basi diverse ma con identico esponente: il prodotto tra due o più potenze aventi gli stessi esponenti è uguale ad una potenza avente per base il prodotto delle basi e per esponente lo stesso esponente.
Contrariamente a quanto accade nella prima proprietà riportata, in cui la potenza presenta esponenti diversi ma stessa base, in questa nozione si presenta una situazione in cui ad esser uguali sono gli esponenti mentre le basi tendono a diversificarsi. Per questo si procederà moltiplicando le basi e riportando lo stesso esponente. Per rendere il tutto più semplice basti pensare ad una situazione analoga alla seguente: 32*22. Nel caso considerato sarà opportuno riportare le basi all’interno di una parentesi, dentro la quale calcoleremo il prodotto dei fattori, e scrivere al di fuori di esse l’esponente 2: (3*2)2. In questo modo otterremo il risultato finale corrispondente a 62, che, una volta svolto l’elevamento a potenza, equivarrebbe a 36.
Quinta proprietà delle potenze
Divisione tra potenze con basi diverse ma con identico esponente: il quoziente tra due potenze aventi gli stessi esponenti è uguale ad una potenza avente per base il quoziente delle basi e per esponente lo stesso esponente.
La quinta proprietà delle potenze si svolge similarmente alla quarta nozione. In questa caratteristica dell’operazione protagonista bisognerà nuovamente aprire una parentesi, dentro alla quale le basi non andranno moltiplicate, bensì divise e, riportare l’esponente considerato al di fuori delle parentesi tonde. Al fine di comprendere meglio questa parte teorica, è opportuno realizzare un esempio simile a quello precedente, come: 42:22. Il primo passaggio da svolgere sarà quindi trascrivere una parentesi avente le due basi più la loro operazione, e riportare al di fuori di ciò l’esponente: (4:2)2. Una volta svolti gli appositi calcoli, otterremo 22, ossia 4.
Sesta proprietà delle potenze
Potenza con esponente razionale: la potenza con esponente frazionario m/n di un numero reale a, positivo o nullo, è la radice aritmetica n-esima di am.
Semplificando il tutto una potenza ad esponente razionale si può esprimere come radice. Per esempio, se avessimo 52/3, bisognerà trasformarlo semplicemente in una radice, ossia 3√52, che svolto risulta 3√25. Qualora la base corrisponda a zero, inoltre, il risultato sarà sempre zero, mentre, se la base equivalga ad un numero negativo, verrà considerata come impossibile, in quanto esente di significato.
Risulta chiaro, per concludere, quanto le proprietà risultino fondamentali al fine di sviluppare una propria capacità intellettuale che possa permetterci di rivolvere calcoli simili a quelli riportati. Se sei interessato ad argomenti di matematica, inoltre, ti consiglio di accedere tutte le domeniche al nostro blog, in cui, già dalle ore 7:00 del mattino, verrà pubblicato un nuovo articolo con un nuovo interessante argomento.